MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties.
نویسندگان
چکیده
MoO2 hollow microspheres with tunable inner space have been synthesized through a hydrothermal process using MoO3 microbelts instead of bulk MoO3 as the precursor. It is found that the reactant morphology has a great impact on the product morphology and the inner space can be tuned by changing the amount of NaOH aqueous solution. An interesting evolutional process from MoO3 microbelts through a rose-like intermediate to MoO2 hollow microspheres has been clearly observed, and thus the possible formation mechanism is revealed. One layer of amorphous carbon has been subsequently coated on the surface of MoO2 hollow microspheres through a simple hydrothermal approach followed by annealing in argon. As the anode material for lithium ion batteries, MoO2@C hollow microspheres manifest excellent lithium-storage properties, such as high capacity (677 mA h g(-1)) and good cycling stability (negligible capacity fading even after 80 cycles). The significantly enhanced performance of MoO2@C hollow microspheres can be attributed to its unique structures, such as nanoscaled primary building blocks, carbon coating, hollow structure, and especially the synergy between the carbon coating and hollow structure.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملPreparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes.
Fe(2)O(3) nanoparticles with a mean diameter of ~9 nm were homogeneously filled into the hollow core of high aspect ratio CNTs synthesized by the AAO template method with tunable filling ratios. These Fe(2)O(3)-filled CNTs were employed as the anode material of lithium-ion battery, and desirable electrochemical properties of high reversible lithium storage capacity and good rate capability were...
متن کاملEffects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward a...
متن کاملCore–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries
0.1016/j.nanoen.2 lsevier Ltd. All rig thors. : [email protected] Abstract Core–shell structured hollow SnO2–polypyrrole (PPy) nanocomposites (SnO2@PPy) with excellent electrochemical performance were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. The thickness of the polymerized amorphous PPy coating covering on the hollow SnO2 microspheres is abou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 38 شماره
صفحات -
تاریخ انتشار 2014